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INTRODUCTION

PUSH # 1 2 3 4 5 6 7 8 9

Every time Count 1 1 1 1 1 1 1 1 1

Array Copy Count 0 1 2 0 4 0 0 0 8

Array Capacity 1 2 4 4 8 8 8 8 16

CCumulative(n) 0 1 3 3 7 7 7 7 15

Most of the assignments in the 2x algorithm are simply O(1) complexity in which we just

add an item when there is room still available. However, the worst time complexity includes

creating a new array, copying all the previous values into the array then finally adding the new

value into the array. This worse-case time complexity is O(n) since we have to copy over all

previous values that have been added.

Cumulative(n) Calculation

SLOPE CALCULATION

y2 − y1
x2 − x1

= M Calculating Slope (M) using 2 Values from CCumulative(n)

15− 7

8− 4
= 2 Slope (M) of CCumulative(n) = 2

y = mx+ b Solve for y-intercept initial value b

15 = 2 ∗ 9 + b → 15− 18 = −3 → b = −3 Solved for b (y-intercept)

Linear Equation for CCumulative(n) when n = 2k + 1: Ccumulative(n) = 2n− 3

Equation for Average Number of Assignments Performed Over n Pushes: Cavg(n) =
2n−3
n

Limit of Cavg(n) as n →∞: limn→∞
2n−3
n = 2
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EXPERIMENT 1

This experiment measures the time for a single push using 2 different array expansion strategies,

with the first strategy we multiply the array by 2x everytime it gets full, in the second strategy

we simply increase the array capacity by 1.

Average Run Time

# of Items 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

+2X (ns) 15 14 12 13.9 13.56 13.0833 14.6 14.45 13 12.84

+1 (ns) 7415 12090 17626 22916 28338 33964 38864 44678 50132 55510

Figure 1: Exemplifies the drastic difference in average runtime between 2x and +1

The graph above demonstrates the significant difference between the 2x and 1+ algorithms.

The 1+ algorithm is linearly increasing with a larger slope than the 2x. This is because instead

of having to copy all the values over each time an item is added, now we are often left with

many open slots and there’s no need to create a new array and copy all the values over.
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EXPERIMENT 2

Hypothesis: When the stack gets full, instead of creating a new stack with the size

maxCapacity+1, by using maxCapacity+10, everytime that we go and add a value to the stack

for the next 10 times the algorithm won’t have to copy every value over for each value-added

but will instead just add a value which has linear complexity. This would save the algorithm

about 10x the amount of work which should cut the run time by a factor of 10x.

Average Run Time

# of Items 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

+1 (ns) 7415 12090 17626 22916 28338 33964 38864 44678 50132 55510

+10 (ns) 1409 1727 1797 2227 2778 3333 3903 4461 5012 5554

Figure 2: Exemplifies the difference in average runtime between +1 and +10

The graph shows the drastic difference between adding one to the size of the stack when

capacity is hit vs adding 10, both lines for the average execution time in nanoseconds are linear

but the slope of the +1 algorithm is greater indicating a worse run time complexity.
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Conclusion: After running both algorithms and comparing their average run times,

our hypothesis is supported by the results of our average runtime. Since the time complexity

of the algorithm is O(f(n)) for only 1
10 and O(f(1)) for 9

10 , we can expect that the execution

time should be cut by a factor of 10. By taking any data value from our data collection, we

can divide the +1 algorithm average run time and divide the nanoseconds by 10, we will find

out that those values almost perfectly line up with the average time taken for the +10 algorithm.

The table and graph below display the time in nanoseconds of the average execution time for

both algorithms, however, the +1 algorithm times have been divided by 10 to help support our

hypothesis showing how by adding +10 instead of +1, the average run time is cut by a factor

of 10x. The graph shows that the average execution of the 1+ algorithm when cut by a factor

of 10x perfectly matches the average execution time of the +10 algorithm, thus supporting the

hypothesis.

# of Items 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

+1 / 10 (ns) 741 1209 1762 2291 2833 3396 3886 4467 5013 5551

+10 (ns) 1409 1727 1797 2227 2778 3333 3903 4461 5012 5554

Figure 3: Exemplifies that the average time execution for +10 algorithm is equal to +1
algorithm average execution time divided by 10.
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EXPERIMENT 3

Hypothesis: Since now we are increasing the stack size by a factor of 1.5x instead of 2x,

we can expect the average time execution of the algorithm to increase by a factor of 0.5x. Over

the long term, the 0.5x algorithm will ultimately have to copy elements into a new array more

repeatedly compared to the 2x algorithm consequentially increasing the average runtime.

Average Run Time

# of Items 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

1.5X (ns) 26 24 25 21 18 16 18 17 9 10

2X (ns) 15 14 12 13.9 13.56 13.0833 14.6 14.45 13 12.84

Figure 4: Exemplifies that the average execution time for 1.5x algorithm differs by a
factor of 0.5x compared to the 2x algorithm.

Conclusion: After running both algorithms and comparing their average run times,

our hypothesis is somewhat supported but we found something much more important. While

both algorithms begin with drastically different average runtimes, we found that they both

are bounded reaching some average run time somewhere around 10 nanoseconds. At first, our

hypothesis was somewhat supported, with a smaller number of items, we can take the 1.5x

algorithm and multiply by 0.5 which would get us the 2x algorithm average execution time

however the changes are insignificant with larger data sets and we can say they’re the same.
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DATA STRUCTURE VARIATIONS

Multi-Array Implementation

Now we are looking at a new implementation of a stack in which we will use a multi-array

approach, everytime the "active" array reaches its max capacity, we will create a new array

double the size of the previous and continue adding items into that array. For this approach,

we will use an array of pointers which will store the pointers to the subarrays that are created.

The list below includes the variables and functions that we’ll require to make this algorithm

functional.

• Array of Pointers to Pointers (_masterArray): This array will store the pointers (ad-

dresses) of every array that will store values. Once our "active" array gets full, we will

create a new array of type <T> data in which the pointer to this array will be stored.

• Value to Track "Active Array Index" (aIndex): Since we are working with arrays, we will

need a value to keep track of the index of the "Active Array" which is simply the array

that we are actively in the process of adding items into. Every time that a new array gets

full, we will need to add one to this index value as now we’re adding a new index into the

_masterArray.

• Value Tracking Current Size (currSize): At each push request we need a variable that tells

us how many items are in the current "Active Array" so the algorithm knows when to

create a new array and double the size. This variable will often be evaluated against the

output of _maxCapacity to check if a new array needs to be created.

• Size of Array at Index (Function | returnSizeAtIndex()): Instead of having an entire array

allocated to holding the maxCapacity values of each subarray inside the _masterArray,

we can define a mathematical function in which we can input the array index value and

have it return the maxCapacity of the array at that given index. Since we know that the

maxCapacity is a function of 2x with x being an index, we can substitute for the given

index for which we want to get the size.

• Add to _masterArray (Function | addToMasterArray()): When currSize = maxCapacity

we not only need to create a new array of maxCapacity[++aIndex] but now we need

to add this new array to the actual _masterArray, this function simply create a new
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_masterArray with size ++aIndex and then have to copy all the previous pointers into

the new _masterArray, de-allocate the old array and set equal to our new variable.

• Remove from _masterArray (Function | removeLastMasterArray()): When using the pop

method and the currSize variable is equal to zero, then that means that we’ve reached

the very bottom of the _masterArray[aIndex] which means we now have to access the

_masterArray[aIndex-1] and therefore will want to remove the last _masterArray index

since we will have an entire column that is empty.

Algorithm Complexity Analysis: Given the more improved algorithm, we can

expect better push operation costs. Now instead of having to copy over all elements from the

previous arrays, we are simply creating a new array and adding its pointer to _masterArray,

this however will require some greater complexity given that instead of copying over all values,

now we are only making a copy of pointers with a factor of 2k. Assuming the worst case in

which the very last array is already full and we have to create a new one, it will be a constant

runtime cost to create a new array and it will be O(log(n)) to add the pointer of the array

to the _masterArray, this is shown to be a little more complex as we have to create a new

_masterArray and copy over all the previous pointers but as more and more items are put in,

this will have to be done less and less over time. The best case is simply going to be O(1) since

we are only adding a value. The best case for this algorithm occurs when there is still room in

the "active array" in which we are adding items. When we pop an item and now the "Active

Array" has a currSize of zero, then we need to remove that entire subarray and move back to

the previous array in _masterArray. This requires O(log(n)) complexity, we need to account

for how many items are in the data structure as a whole, then we have to divide the formula

that provides the size of each data individual array since we know how many array there are in

total. This is really important because when an array is popped off the structure, the algorithm

needs to create a new _masterArray and copy all the pointers of the subarrays up to aIndex -

1. The worse case for a new data structure is O(n) data slots that are open. In more technical

terms, we can look at the aIndex to see how many arrays we have previously created to know

how many open data slots will be open the next time an array is created. The total memory

used is a geometric series starting off at 1 and going to 2k.
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Algorithm 1 Push Method
Require: input ̸= 0

if currSize = maxCapacity[currSize] then
newArr ← new[maxCapacity[currSize + 1]] {Set variable newArr to pointer to a
new array size maxCapacity[currSize+1]}
addToMasterArray(newArr) {Add newArr to _masterArray}
aIndex← aIndex+ 1 {Increase _masterArray index tracker}
currSize← 0

else
_masterArray[aIndex[currSize]] = input
currSize← currSize+ 1

end if

Algorithm 2 Pop Method
if aIndex AND currSize = 0 then

THROW EXCEPTION: ARRAY IS EMPTY
end if
if currSize = 0 then

removeLastMasterArray()
aIndex← aIndex− 1
currSize← returnSizeAtIndex[aIndex]
return_masterArray[aIndex[currSize]]

else
delete _masterArray[aIndex[currSize]]
currSize← currSize− 1

end if

Algorithm 3 Top Method
if aIndex AND currSize = 0 then

THROW EXCEPTION: ARRAY IS EMPTY
else

return _masterArray[aIndex[currSize]]
end if
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